If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2+9x=108
We move all terms to the left:
3x^2+9x-(108)=0
a = 3; b = 9; c = -108;
Δ = b2-4ac
Δ = 92-4·3·(-108)
Δ = 1377
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1377}=\sqrt{81*17}=\sqrt{81}*\sqrt{17}=9\sqrt{17}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(9)-9\sqrt{17}}{2*3}=\frac{-9-9\sqrt{17}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(9)+9\sqrt{17}}{2*3}=\frac{-9+9\sqrt{17}}{6} $
| 10x+6=2(4x+12) | | d+18/7=4 | | -4(1+5n)=6n-30 | | -38=16v+3v | | 2w-9=1/4(w-1) | | -28-x=7 | | x(x-10)-13=0 | | 5x-50≤100x=30 | | -6(1+2n)-5n=125 | | 7(-8a+8)=-8a+8 | | 3x-4=7x=12 | | 4(6x+8=32+24x | | 0.2(10x+18)=3.4(0.2x+5) | | -5n-40=4(4-1n) | | -8x+9=2x-16 | | 8y+2+21=180 | | 8x+71=134-13x | | x+65+85=180 | | 2x+5x+4=25=3 | | 2(×-3)=x+3 | | (3y+99)+(12y+9)=270 | | 22(x+5)=83 | | -38+5b=2(2-8b) | | 7/3x+5=-10 | | x(x-7)=120 | | 5(x+22)=83 | | 3(2x-5)+3x+3x=-60 | | Y=21x12+47 | | 1.10+2c=2.40;c= | | H=10.00+0.06x | | -5x=-300 | | 5(8x+2)−64=2(8x+9) |